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Abstract. The statistical properties of the energy landscape of the low-autocorrelation binary
string problem (LABSP) are studied numerically and compared with those of several classic
disordered models. Using two global measures of landscape structure which have been introduced
in the simulated annealing literature, namely, depth and difficulty, we find that the landscape
of the LABSP, except perhaps for a very large degeneracy of the local minimum energies, is
qualitatively similar to some well known landscapes such as that of the mean-field two-spin glass
model. Furthermore, we show both analytically and numerically that a well known mean-field
approximation to the pure model describes the statistical properties of the LABSP extremely well.

1. Introduction

The low-autocorrelation binary string problem (LABSP) [1, 2] consists of finding binary
strings x of length N over the alphabet {±1} with low aperiodic off-peak autocorrelation
Rk(x) = ∑N−k

i=1 xixi+k for all lags k. These strings have technical applications such as the
synchronization in digital communication systems and the modulation of radar pulses.

The quality of a string x is measured by the fitness or energy function

H(x) = 1

2N

N−1∑
k=1

[ N−k∑
i=1

xixi+k

]2

= 1

2N

N−1∑
k=1

Rk(x)
2. (1)

In most of the literature on the LABSP the merit factor F(x) = N2/(4H(x)) is used (see
e.g. [2]): using H instead is more convenient for explicit computations.

Recently there has been much interest in frustrated models without explicit disorder.
The LABSP and related bit-string problems have served as model systems for this avenue
of research [3–6]. These investigations have lead to a claim that the LABSP has a ‘golf-
course’ type landscape structure, which would explain the fact that it has been identified as a
particularly hard optimization problem for heuristic algorithms such as simulated annealing
(see [2, 7, 8] and references therein).

The landscape of the LABSP consists of a (dominant) four-spin Hamiltonian plus an
asymptotically negligible quadratic component. We note that the generic four-spin landscape
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is Derrida’s four-spin Hamiltonian [9] which is a linear combination of all

(
N

4

)
distinct

four-spin functions, while the LABSP Hamiltonian, on the other hand, only contains O(N3)

non-vanishing four-spin contributions. The landscape of the LABSP thus corresponds to a
dilute four-spin ferromagnet. Numerical simulations in [10] show that the LABSP has by
far more local optima than a generic four-spin glass model, which corroborates the rather
surprising finding that disordered ferromagnets have more metastable states than their spin-
glass counterparts [11].

In this contribution we carry out a thorough investigation of the statistical properties of
the energy landscape of the LABSP, aiming to determine whether it has any peculiar features
that would lead to a ‘golf-course’ structure, with vanishingly small correlations between the
energies of neighbouring states. To do so we carry out a comparison with four disordered
models, namely, the random energy model (REM) [9], the ±1 four-spin glass model [12, 13],
a mean-field (MF) approximation to H [6], which reproduces the results of Golay’s ergodicity
assumption [1], and, finally, the ±1 two-spin glass model [14]. The replica analyses indicate
that the first three models have a rather unusual spin-glass phase, where the overlap between
any pair of different equilibrium states vanishes, while the last model has a normal spin-glass
phase described by a continuous order parameter function.

The rest of this paper is organized in the following way. In section 2 we calculate
analytically the average density of local minima of the disordered mean-field approximation
to H and show that it indeed describes very well the statistics of metastable states of the pure
model. Rather surprisingly, we find that the value of the energy density at which the density
of local minima vanishes coincides with the bound predicted by Golay [1], as well as with
the ground-state energy predicted by the first step of replica-symmetry breaking calculations
of the mean-field model [6]. To properly compare the landscapes of the different models
mentioned above, in section 3 we consider two global measures of landscape structure which
have been introduced in the simulated annealing literature: depth and difficulty [15–18]. We
show that the LABSP, the mean-field approximation and the binary ±1 two- and four-spin
glasses exhibit approximately the same qualitative behaviour in these parameters, while the
behaviour pattern of the random energy model departs significantly from these. Finally, in
section 4 we summarize our main results and present some concluding remarks.

2. Mean-field approximation

Bouchaud and Mézard [6] and, independently, Marinari et al [3] have proposed the following
disordered model, which is ‘as close as possible’ to the pure model:

Hd = 1

2N

N−1∑
k=1

[ N∑
i=1

N∑
j �=i

J kij xixj

]2

. (2)

Here the coupling strengths J kij �= J kji are statistically independent random variables that can
take on the value unity with probability (N − k)/N2 and zero otherwise. Hence the average
number of bonds in H and Hd is the same, namely, N − k. Moreover, the pure model is
recovered with the choice J kij = δi+k,j . Probably the most appealing feature of this model
is that its high-temperature (replica-symmetric) free energy is identical to that obtained by
Bernasconi [2] using Golay’s ergodicity assumption [1], in which the squared autocorrelations
R2
k are treated as independent random variables. As the constraints of the one-dimensional

geometry are lost in the disordered Hamiltonian Hd, it can be viewed as the mean-field version
of H.
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The thermodynamics of the disordered model (2) is interesting on its own since, similarly
to the random energy model [9], it presents a first-order transition at a certain temperature
Tg , below which the overlap between any pair of different equilibrium states vanishes [6]. In
contrast to the random energy model, however, the degrees of freedom are not completely
frozen for T < Tg , and the entropy vanishes linearly with T as the temperature decreases
towards zero. To better understand the low-temperature phase of the mean-field Hamiltonian
Hd, in the following we will calculate analytically the expected number of metastable states
〈N (ε)〉 with a given energy density ε.

The energy cost per site of flipping the spin xi is δHi
d = −�i where

�i =
∑
k

vki

( ∑
j

vkj − 2vki

)
(3)

with

vki = 1√
N

∑
j �=i
(J kij + J kji)xixj . (4)

We say that a state x = (x1, . . . , xN) is a strict local minimum if �i < 0 for all i; in the case
where the equality �i = 0 holds for some i, we call x a degenerate local minimum. In the
forthcoming analysis, the choice of � instead of<, which is customary in optimization theory,
see e.g. [18], does not make any difference. In section 3, however, degeneracies will play a
role.

The average number of local minima with energy density ε can be written as

〈N (ε)〉 =
〈

Trx δ

[
ε − 1

N
Hd(x)

] ∏
i

�(−�i)

〉
(5)

where Trx denotes the summation over the 2N spin configurations and 〈· · ·〉 represents the
average over the couplings J kij . Here�(x) = 1 if x > 0 and 0 otherwise, and δ(x) is the Dirac
delta-function.

Using the integral representation of the delta-function we obtain

〈N (ε)〉 = N

∫
dε̂

2π
eiNε̂ε

∏
i

∫
d�i d�̂i

2π
�(−�i)e

i�̂i�i

∏
ik

∫
dvki dv̂ki

2π
eiv

k
i v̂

k
i

× exp

{
− i

ε̂

8

∑
k

( ∑
i

vki

)2

− i
∑
ik

�̂iv
k
i

( ∑
j

vkj − 2vki

)}

× Trx

〈
exp

[
− i√

N

∑
ik

v̂ki

∑
j �=i

(
J kij + J kji

)
xixj

]〉
. (6)

The average over the couplings can be easily carried out and, in the thermodynamic limit
N → ∞, it yields

ln〈· · ·〉 = −
∑
k

(
1 − k

N

)[
2i√
N

(
1√
N

∑
i

xi

)(
1√
N

∑
i

v̂ki xi

)

+
1

N

∑
i

(v̂ki )
2 +

(
1

N

∑
i

v̂ki

)2]
. (7)

We note that this result could have been obtained by considering the couplings J kij as Gaussian
independent random variables with means and variances equal to (1 − k/N)/N . To obtain
a physical but nontrivial thermodynamic limit we must assume that the magnetization

∑
i xi

scales with N1/2, which results then in the vanishing of the term that contains the dependence
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on the spin variables in equation (7). Dropping this term, the sum over the spin configurations
yields simply 2N . As the remaining calculations are rather straightforward we will only sketch
them in the following.

To carry out the integrals over vki and v̂ki we introduce the auxiliary parameters Nqk =∑
i (v̂

k
i )

2, Nmk = ∑
i v̂

k
i and rk = ∑

i v
k
i . After performing the resulting Gaussian integrals

we introduce the saddle-point parameters NM = ∑
i �̂i and NQ = ∑

i �̂
2
i , which allow the

decoupling of the indices k and i. The final result is

〈N (ε)〉 = 2NN3
∫

dM dM̂

2π

∫
dQ dQ̂

2π

∫
dε̂

2π
exp[iN(MM̂ +QQ̂ + εε̂)]

× exp

[
N

∫ 1

0
dz lnG0(z, ε̂,M,Q) +N lnG1(M̂, Q̂)

]
(8)

where

G0 =
∫

dq dq̂

2π

∫
dm dm̂

2π

∫
dr dr̂

2π
exp

[
irr̂ − z(q +m2)− i

ε̂

8
r2

]

× exp[im̂(m− r̂ − rM) + iq̂(q − r̂2 − r2Q− 2r̂rM + 4iM)] (9)

and

G1 =
∫

d� d�̂

2π
�(−�) exp[−iQ̂�̂2 + i�̂(�− M̂)]. (10)

The integrals in equation (8) are then evaluated in the limit N → ∞ by the standard saddle-
point method, while the integrals in the equations for G0 and G1 are trivially performed. The
final result for the exponent

α(ε) = 1

N
ln〈N (ε)〉 (11)

is simply

α(ε) = i[(2 + M̂)M +QQ̂ + εε̂] + ln erfc

[
M̂

(4iQ̂)1/2

]

− 1
2

∫ 1

0
dz ln[1 + 8(Q−M2)z2 + 8iMz + iε̂z] (12)

where the saddle-point parameters M , M̂ , Q, Q̂ and ε̂ are determined so as to maximize
α. In particular, a brief analysis of the saddle-point equations indicates that M , Q̂ and ε̂
are imaginary, so α is real, as expected. Introducing the real parameters µ = iM , β = iε̂,
η = M̂/(4iQ̂)1/2 and ξ = −Q/M2, we rewrite equation (12) as

α(ε) = 2µ− η2

ξ
+ βε + ln erfc(η)− 1

2

∫ 1

0
dz ln[1 + (β + 8µ)z + 8µ2(1 + ξ)z2] (13)

where we have used the saddle-point equation ∂α/∂Q̂ = 0 to eliminate Q̂. We note that in
equation (13) the parameters η and µ are decoupled, which facilitates greatly the numerical
problem of maximizing the ‘complexity’ or ‘configurational entropy per spin’ α.

The number of local minima, regardless of their particular energy values, is obtained
by maximizing α with respect to ε, which corresponds to setting β = 0 in the saddle-point
equations. In this case, the value of the energy density that maximizes α, denoted by εt , can be
interpreted as the typical (average) energy density of the local minima. We find α = 0.4394
and εt = 0.0837. These results agree very well with the numerical data α ≈ 0.4388 ± (7) and
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Figure 1. Exponent α(ε) as a function of the energy density ε. The ground state energy is defined
by α(ε0) = 0. We find ε0 = 0.020 2845.

εt ≈ 0.0826 ± (6), obtained through the exhaustive search for N � 20 and averaging over
100 realizations of the couplings.

Moreover, an exhaustive search for N � 30 yields that the exponent governing the
exponential growth of the number of local minima in the pure model H is 0.453 ± (7) and
the typical energy density of the minima is 0.086 ± (2). Hence, so far as the statistics
of metastable states is concerned, the mean-field Hamiltonian Hd yields in fact a very
close approximation to the pure Hamiltonian H. For the purpose of comparison we note
that α = 0.1992 and α = 0.3552 for the binary ±1 two-spin glass [19, 20] and four-
spin glass models [21, 22], respectively, while α = ln 2 ≈ 0.6931 for the random energy
model [9].

In figure 1 we show the exponent α as a function of the energy density ε. For the sake of
clarity we present only the region of positive values of α. The lowest value of ε at which the
exponent α vanishes, denoted by ε0, gives a lower bound to the ground-state energy density of
the spin model defined by the Hamiltonian (2) [19]. We find ε0 = 0.020 2845, which, within
the numerical precision, is exactly the value predicted by the first step of replica-symmetry
breaking [6] as well as by Golay’s ergodicity hypothesis [1, 2]. This coincidence between the
replica and the density of metastable states predictions for the ground-state energy occurs also
in the random energy model [9, 21].

A similar study of the symmetrized version of the mean-field Hamiltonian (2), in which
J kij = J kji , yields exactly the same expression for the exponent α (see equation (13)), provided
that the energy density ε is replaced by εs/2. Hence the symmetrization procedure results
in a trivial rescaling of the energy densities of the local minima, without affecting their
number.
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3. Energy barriers and basin sizes

The picture that emerges from the replica approach to disordered spin models is that the phase
space V composed of the 2N spin configurations is broken into several valleys connected by
saddle points [23]. The relative locations and energetic properties of valleys and saddles are
expected to determine, for example, the ease with which the ground state can be reached.

It will be convenient to introduce the notion of saddle-point energy E[s, w] between two
(not necessarily strict) minima s and w. Denoting, for the sake of generality, the energy of
state x by f (x), we can write

E[s, w] = min{max[f (z)|z ∈ p] | p : path from s to w} (14)

where a path p is a sequence of configurations connected by one-spin flips (or, more generally,
by moves taken from any desired ‘move set’). The saddle-point energy E[s, w] forms an
ultrametric distance measure on the set of local minima (see e.g. [24, 25]). The barrier
enclosing a local minimum is the height of the lowest saddle point that gives access to an
energetically more favourable minimum. In symbols,

B(s) = min{E[s, w] − f (s) | w : f (w) < f (s)}. (15)

If B(s) = 0 then the local minimum s is marginally stable. It is easy to check that
equation (15) is equivalent to the definition of the depth of local minimum in [17]. It agrees
for metastable states with the more general definition of the depth of a ‘cycle’ in the literature
on inhomogeneous Markov chains [16, 26, 27].

The information contained in the energy barriers is conveniently summarized by two global
parameters that e.g. determine the convergence behaviour of simulated annealing and related
algorithms. The depth of a landscape [15–18] is defined as

D = max{B(s) | s is not a global minimum}. (16)

It can be shown that simulated annealing converges almost surely to a ground state if and only
if the cooling schedule Tk satisfies

∑
k�0 exp(−D/Tk) = ∞ [15]. In order to make the depth

comparable between different landscapes we shall consider below the dimensionless parameter
D/σ , where σ 2 is the variance of the energy across the landscape. A related quantity is the
(dimensionless) difficulty [16, 27] of the landscape, defined by

ψ = max

{
B(s)

f (s)− f (min)

∣∣∣∣ s is not a global minimum

}
(17)

where f (min) is the global energy minimum and the maximum is taken over non-global
minima only. It is directly related to the optimal speed of convergence of simulated annealing.

Since a direct evaluation of equation (14) would require the explicit constructions of all
possible paths it does not provide a feasible algorithm for determining E[s, w] even if N is
small enough to allow an exhaustive survey of the landscape. The values of E[s, w] and B(s)
can, however, be retrieved from the barrier tree of the landscape. Barrier trees have been
considered recently in the context of RNA folding [28] and under the name ‘disconnectivity
graphs’ in the protein folding literature [29, 30]. In this work we use a modified version of
the program barriers, which was developed for the analysis of RNA folding landscapes
in [28]. Alternatively, partial barrier trees can be obtained from branch-and-bound algorithms
for certain classes of landscapes such as short-range ±1 two-spin models [31,32]. For the sake
of completeness we briefly outline the definition of the barrier trees below.

For simplicity let us assume that the energies of any two spin configurations are distinct,
i.e. there is a unique ordering of the spin configurations by their energies. The construction of
the barrier tree starts from an energy-sorted list of all configurations in the landscape. We will
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need two lists of valleys throughout the calculation: the global minimum x[1] belongs to the
first active valley V1, while the list of inactive valleys is empty initially. Going through this
list of all configurations in the order of increasing energy we have three possibilities for the
spin configuration x[k] at step k.

(i) x[k] has neighbours in exactly one of the active valleys Vi . Then x[k] belong to Vi .
(ii) x[k] has no neighbour in any of the (active or inactive) valleys that we have found so far.

Then x[k] is a local minimum and determines a new active valley Vl . In the barrier tree
x[k] becomes a leaf.

(iii) x[k] has a neighbour in more than one active valley, say {Vi1 , Vi2 , . . . , Viq }. Then it is a
saddle point connecting these active valleys. In the barrier tree x[k] becomes an internal
node. In this case we add x[k] to the valley Vi1 with the lowest energy. Then we copy the
configurations of Vi2 , . . . , Viq to Vi1 . Finally, the status of Vi2 through Viq is changed from
active to inactive. This reflects the fact that from the point of view of a configuration with
an energy higher than the saddle point x[k], Vi1 , . . . , Viq appear as a single valley that is
subdivided only at lower energy. Consequently, after the highest saddle-point energy has
been encountered, all valleys except for the globally optimal V1 are in the inactive list.

The outcome of this procedure is a tree such as the one shown in figure 2. The leaves
correspond to the valleys of the landscape, while the interior nodes denote the saddle points.
The tree contains the information on all local minima and their connecting saddle points.
Indeed, saddle-point energies and energy barriers can be immediately read off the barrier trees.

A precise definition of valleys and saddle points in a landscape requires that we take into
account the degeneracies in the energy function, i.e. the existence of distinct spin configurations
with identical energies, and in particular, the presence of neutrality, where neighbouring
configurations have identical energies [33]. Degeneracies complicate the construction of the
barrier tree, since the energy sorting of the landscape is no longer unique. The simplest remedy
is to use the same procedure as above starting from an arbitrary energy sorting. In this case the
order of degenerate configurations in the list is arbitrary but fixed throughout the computation.
Before proceeding to a configuration with strictly higher energy a simple clean-up step needs
to be included in the tree-building algorithm: adjacent valleys with E[s, w] = f (s) = f (w)

are joined to a single valley. Note that the resulting barrier tree may still contain distinct valleys
with the same energy, as the examples in figure 3 show. The leaves of the barrier trees are in
general valleys which may contain more than one degenerate local minimum.

There is a clear visual difference between the barrier trees for LABSP and the mean-
field approximation MF on the one hand, and the ±1 four-spin Hamiltonian and the REM on
the other hand. The main difference appears to be a much larger amount of degeneracy in the
LABSP/MF, in particular highly degenerate ground states. In fact, it can be shown that the pure
Hamiltoninan (1) has many nontrivial symmetries, besides the trivial one where x is replaced
by −x, which are then responsible for the high degeneracy observed in the tree barrier [8].
Obviously, the disordered Hamiltonian (2) cannot have the same symmetries as the pure one,
and so its high degeneracy stems simply from the extreme dilution of the couplings J kij . All
models, except REM, are symmetric under replacing x by −x, hence all states appear in pairs.
We note that the barrier tree of the ±1 four-spin model is reminiscent of the ‘funnels’ discussed,
for example, in protein folding, with a large energy difference between the two global optima
and almost all local ‘traps’. In contrast, the REM shows, as expected, no relationship between
energy and nearness of local minimum to the global one.

During the construction of the barrier tree it is easy only to compute the lowest barrierB ′(s)
from s to a local minimum that comes earlier in the list of configurations, instead of the lowest
barrier B(s) to a local minimum with strictly smaller energy. Clearly, B ′(s) � B(s) since we
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Figure 2. Example of a barrier tree of a landscape. Data belong to a Gaussian REM with N = 7.
The leaves 1–12 denote the local minima. The global minimum 1 is marked with an asterisk.
Saddle points are labelled with capital letters from A to G. The saddle points B, C, D and E are
‘degenerate’, indicating that the lowest-energy paths leaving, for example, 4, 5 and 8 run through a
common exit point. (Note that all 27 = 128 configurations have pairwise distinct energies, hence
there are no two distinct saddle points with the same energy, which may exist, for example, in
the LABSP.) The barrier of 5 is B(5) = E(D) − E(5), along the lowest path from 5 to 4, while
B(4) = E(E)− E(4), along the lowest path from 4 to 1∗.

take the minimum over a few more configurations than prescribed by equation (15). In the
case of degenerate landscapes our version of the barriers program calculates B ′(s), which
depends on the ordering of the degenerate configurations. We obtain, however, B(s) = B ′(s)
for at least one of the valleys at each energy level. The fact that in equation (16) we are required
to maximize in particular over the barriers necessary to escape from any given energy level,
however, implies that the values of depth and difficulty can be obtained directly from B ′(s)
instead of B(s). We note at this point that a modified version D′ � D of the depth in which
the maximum over all non-global minima is replaced by the maximum over all minima except
one global minimum x∗ can also be obtained by the simplified procedure above, since it can
be shown that D′ is independent of the choice of x∗ [27]. The parameter D′ also appears in
exact results on the convergence of simulated annealing.

Depth and difficulty are shown in figure 4 as a function of the number N of spins. While
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LABSP MF

+/- 4spin REM

Figure 3. Tree representation of typical landscapes with N = 16. Upper left, LABSP; upper
right, mean-field approximation; lower left, integer four-spin model; lower right, Gaussian REM
for N = 14 since for N = 16 the number of minima is too large to allow a meaningful drawing.

there are (moderate) quantitative differences, there does not seem to be a qualitative difference
between the LABSP, the mean-field approximation, and the discretized two- and four-spin
models. Note that all landscapes with the exception of the Gaussian REM have constant
scaled depth D/σ , while D/σ increases linearly with the system size in the REM.

A linear regression of the difficulties yields the slopes 0.595 ± 6, 0.926 ± 14 and 0.07 ± 2
for the mean-field Hamiltonian, the ±1-version of the 4-spin model and the ±1 two-spin
model, respectively. As expected, the difficulty of the quadratic model is much smaller than
the difficulty of the four-spin model. For the sake of clarity, we have omitted the data about
the mean difficulty of the REM since it is too large as compared to those shown in the figure.
Moreover the width of its difficulty distribution is also so large that the mean value is not
physically meaningful.

Additional information on the local minima can be traced during the construction of the
barrier tree. We say that a configuration x belongs to the basin of the local minimum s if s is
the endpoint of the gradient walk (steepest descent) starting in x. (Recall that each step of a
gradient walk goes to the lowest-energy neighbour.) By determining the valley to which the
lowest-energy neighbour of x[k] belongs we may for instance record the basin size of each
local minimum. In a landscape without neutrality the gradient walk is uniquely determined
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Figure 4. Depth and difficulty. Symbols: • LABSP, mean-field approximation, �±1-version
of the two-spin model, � ±1-version of the four-spin model, ∗ Gaussian REM. Data are averaged
over 100 instances (50 instances forN = 20); the error bars show the width of the distribution, not
the standard error of the means.

by the initial condition, hence the basins form a partition of the set of configurations. We
neglect the effects of neutrality in our numerical data by directing the gradient walk to the first
possibility in the energy-sorted list of configurations.

Computationally we find, for all models but the REM, that there is an approximate linear
relationship between the energy of a local minimum and the logarithm of the size of its gradient-
walk basin of attraction (see figure 5). The fact that the deepest valleys have the largest basins
of attraction can be understood as a consequence of the correlation between neighbouring
spin configurations in all landscapes with the exception of the REM, for which all low-energy
minima have essentially the same size of basin of attraction.
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Figure 5. The logarithm of the size of the gradient-walk basin of attraction of the minima as
a function of their energies for N = 20. The data for MF and the ±1 four-spin model are
superpositions of ten instances, while for the REM we show only a single instance.

4. Discussion

The performance evaluation of local search heuristics, in particular simulated annealing, in
typical instances of optimization problems is a relatively new subject, where the existing
criteria for measuring the hardness or difficulty of a problem are still not widely known or
accepted, as compared to, for example, the more traditional worst-case analysis. In fact, on
the one hand, one expects that the average number of local minima may serve as a measure
of the problem hardness, while, on the other hand, one must concede that only local minima
separated by high energy barriers are potential traps for the search heuristic. In this paper we
combine the concepts of depth and difficulty from the simulated annealing literature to the
average density of states calculations from the statistical mechanics of disordered systems to
obtain a reasonably complete statistical description of the energy landscapes of several classic
disordered models. The motivation is to compare the statistical features of these landscapes
with the properties of a rather puzzling deterministic problem—the LABSP—which has been
identified as a particularly hard optimization problem for search heuristics such as simulated
annealing.

Our results indicate that there is only a quantitative difference between the depths and
difficulties, as defined in the simulated annealing literature, of all models investigated, with
the exception of the REM, for which the complete lack of correlations between the energies of
neighbouring configurations results in a genuine golf-course type landscape. Hence, we have
found no evidences of a golf-course-like structure in the LABSP landscape, which resembles
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a correlated spin-glass model much more than the REM. It must be emphasized that although
the pure LABSP model (1) may have a glass phase characterized by uncorrelated equilibrium
states (at least its mean-field version has such a phase [6]), the mere existence of this phase
is no evidence of a golf-course-like structure, which, as mentioned above, requires vanishing
correlations between the energy values of neighbouring spin configurations. In addition, our
analysis has shown that the disordered, mean-field Hamiltonian Hd, equation (2), describes
surprisingly well the qualitative (e.g. tree representation) as well as the quantitative (e.g.
number, typical energy and energy barriers of local minima) features of the pure model H,
equation (1).

Perhaps the ‘golf-course’ conjecture [2,8] stems simply from the fact that for large N the
LABSP is a much more difficult problem for simulated annealing than the familiar quadratic
spin glass, as shown in figure 4. Interestingly, the pairwise comparison between the problems
indicates that those problems with the larger number of local minima have also the larger
difficulty, the only exception being the LABSP and the four-spin glass model. It should
therefore be interesting to use these two problems as a test-bed for validating the hardness
criteria proposed in the simulated annealing literature.

To conclude, we note that the tree representations of the various landscapes were
characterized solely by a rather extreme parameter—depth—which essentially measures the
highest energy barrier between all pairs of minima. Although depth is the relevant quantity to
characterize potential traps to local search algorithms, it would be also interesting to measure
other statistical features of those trees. In particular, two aggregate statistics borrowed from
population genetics [34] might be of interest, namely, the average overlap and the average
barrier height between two randomly sampled minima. In this vein, we think that the statistical
tools used to characterize phylogenetic or genealogical trees might be useful to classify the
tree representations of disordered models as well.
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